Measure risk by estimating inverse transition probabilities
Source:R/mesurer_risque.R
assess_risk.Rd
Calculates probabilities P(X=i|X'=j) where X denotes the original value and X' the perturbed value, providing risk measures for statistical disclosure control.
Value
data.frame with 5 columns:
i: original value(s)
j: perturbed value(s)
pi_hat: estimated probability P(X = i)
pij: transition probability P(X' = j | X = i)
qij: inverse transition probability P(X = i | X' = j)
Examples
if (FALSE) { # \dontrun{
library(ptable)
library(dplyr)
mat_trans <- create_transition_matrix(D = 5, V = 2)
data("dtest")
tab_comptage <- tabulate_cnt_micro_data(
df = dtest, rk = NULL,
cat_vars = c("DEP", "DIPLOME", "SEXE", "AGE"),
marge_label = "Total",
freq_empiriq = TRUE
)
# Calculate inverse transition probabilities P(X=i|X'=1) with i in 1:4
assess_risk(mat_trans, tab_comptage$freq, 1:4, 1)
# Calculate for multiple i and j values
assess_risk(mat_trans, tab_comptage$freq, 1:4, 1:4)
} # }