Measures risk and utility for multiple sets of CKM parameters from a table, using one randomly generated set of record keys.
Usage
assess_RUs(
df,
cat_vars,
hrc_vars = NULL,
parametres,
confident,
gv = 50,
pv = 20,
seed = NULL
)
Arguments
- df
data.frame. Input microdata
- cat_vars
Character vector. Categorical variables
- hrc_vars
Named list. Hierarchical variables
- parametres
data.frame. Parameter combinations to test with columns D, V, js
- confident
integer. Official confidentiality threshold
- gv
integer. Threshold defining large counts (default: 50)
- pv
integer. Threshold defining small counts (default: 20)
- seed
integer. Random seed number. If NULL, uses parent program's seed
Random seed
With this function, it is recommended to use the seed= argument if you want all scenarios to benefit from the same random seed and ensure results allow fair comparison between scenarios.
Examples
if (FALSE) { # \dontrun{
parametres <- build_parameters_table(c(10,15), c(10,20), js = 5)
res_RUs <- assess_RUs(
df = dtest,
cat_vars = c("REG", "DIPLOME", "SEXE", "AGE"),
parametres = parametres,
confident = 10,
seed = 1234
)
} # }