
Reconciliation points - vote offices
decouplage_ptsBv.Rd
Gives a single BV for each point
Usage
decouplage_ptsBv(
sfelecteurs,
com,
var_bv = "id_brut_bv_reu",
var_geo_score = "geo_score",
var_nbaddress = "nb_adresses",
epsg
)
Details
when several addresses geolocalized on the same point, and those addresses are related with different BVs :
If possible : Take the BV with a maximum number of addresses geolocalized on that point
If as many number of addresses for several BVs : take the BV related to the best geolocalized points
Else, random choice (rare)
Examples
sfelecteurs <- mapvotr::sf_input_voronoi
com <- mapvotr::contours_com_sample %>%
dplyr::filter(code_insee == "29039") %>%
sf::st_transform(2154)
var_bv <- "id_brut_bv_reu"
var_geo_score <- "geo_score"
var_nbaddress <- "nb_adresses"
epsg <- 2154
mapvotr:::decouplage_ptsBv(sfelecteurs, com, var_bv, var_geo_score, var_nbaddress, epsg)
#> [1] "Launch : decouplage_ptsBv"
#> Log is not open.
#> Simple feature collection with 267 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 183062.1 ymin: 6774688 xmax: 184500.1 ymax: 6777707
#> Projected CRS: RGF93 v1 / Lambert-93
#> # A tibble: 267 × 2
#> id_brut_bv_reu geometry
#> * <chr> <POINT [m]>
#> 1 29039_1 (183062.1 6774983)
#> 2 29039_1 (183075 6774976)
#> 3 29039_1 (183094 6774983)
#> 4 29039_1 (183095.3 6774994)
#> 5 29039_1 (183100.1 6774995)
#> 6 29039_1 (183104.8 6774997)
#> 7 29039_1 (183109.8 6774988)
#> 8 29039_1 (183116 6775017)
#> 9 29039_1 (183138.1 6775008)
#> 10 29039_1 (183139.2 6775000)
#> # ℹ 257 more rows